Что нужно знать о детской вакцинации?

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Что нужно знать о детской вакцинации?». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.

При первом заражении инфекцией иммунной системе нужно некоторое время для выработки приобретенного иммунитета. Он работает эффективнее врожденного и может защищать нас на протяжении всей дальнейшей жизни, но формируется такой иммунитет не сразу.

Что скрывается в шприце

Все вакцины можно условно разделить на две группы:

  • Корпускулярные вакцины. Они содержат ослабленный живой (вакцины против полиомиелита, кори, свинки, краснухи, туберкулеза) или целый “убитый” (вакцины против коклюша, бешенства, вирусного гепатита А и полиомиелита) микроорганизм (рис. 2 А и Б). В озбудителей инфекций ослабляют, выращивая их в лаборатории на культурах клеток, пока дикий штамм не изменит свойства, став безопасным ровно настолько, чтобы способствовать формированию иммунитета, но не вызывать самого заболевания. Для “убийства” клеток вируса или бактерий чаще всего используют формальдегид. Такие вакцины безопаснее живых, но иммунитет после них менее стойкий.
  • Субъединичные вакцины. В состав таких препаратов входят не целые микроорганизмы, а только отдельные компоненты клеточной стенки или других частей возбудителя (вакцины против коклюша, менингококковой инфекции и др.) (рис. 2 В). В эту же группу входят вакцины, содержащие инактивированные токсины бактерий (вакцины против дифтерии и столбняка) и рекомбинантные вакцины. Последние получают методами генной инженерии, когда генетический материал опасного микроорганизма помещают в дрожжи, после чего модифицированные дрожжи производят необходимые для вакцины белки-антигены. Примером могут служить вакцины против вирусного гепатита B и вируса папилломы человека.

А.Сэбин, М.П.Чумаков, А.А.Смородинцев

Примечание: Атт. – аттенуированная, Див. – дивергентная.

Инактивированные вакцины – приготовлены из убитых микробных тел либо метаболитов, а также отдельных антигенов, полученных биосинтетическим или химическим путем. Эти вакцины проявляют меньшую (по сравнению с живыми) иммуногенность, что ведет к необходимости многократной иммунизации, однако они лишены балластных веществ, что уменьшает частоту побочных эффектов.

Корпускулярные (цельноклеточные, цельновирионные) вакцины – содержат полный набор антигенов, приготовлены из убитых вирулентных микроорганизмов (бактерий или вирусов) путем термической обработки, либо воздействием химических агентов (формалин, ацетон). Напр., противочумная (бактериальная), антирабическая (вирусная).

Компонентные (субъединичные)вакцины – состоят из отдельных антигенных компонентов, способных обеспечить развитие иммунного ответа. Для выделения таких иммуногенных компонентов используют различные физико-химические методы, поэтому их ещё называют химические вакцины. Напр., субъединичные вакцины против пневмококков (на основе полисахаридов капсул), брюшного тифа (на основе О-, Н-, Vi — антигенов), сибирской язвы (полисахариды и полипептиды капсул), гриппа (вирусные нейраминидаза и гемагглютинин). Для придания этим вакцинам более высокой иммуногенности их сочетают с адъювантами (сорбируют на гидроксиде аллюминия).

Генно-инженерные вакцины содержат антигены возбудителей, полученные с использованием методов генной инженерии, и включают только высокоиммуногенные компоненты, способствующие формированию иммунного ответа.

Пути создания генно-инженерных вакцин:

1. Внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы (см. векторные вакцины).

2. Внесение генов вирулентности в неродственные микроорганизмы с последующим выделением антигенов и их использованием в качестве иммуногена. Напр., для иммунопрофилактики гепатита В предложена вакцина, представляющая собой HBsAg вируса. Его получают из дрожжевых клеток, в которые введен вирусный ген (в форме плазмиды), кодирующий синтез HBsAg. Препарат очищают от дрожжевых белков и используют для иммунизации.

3. Искусственное удаление генов вирулентности и использование модифицированных организмов в виде корпускулярных вакцин. Селективное удаление генов вирулентности открывает широкие перспективы для получения стойко аттенуированных штаммов шигелл, токсигенных кишечных палочек, возбудителей брюшного тифа, холеры и др. бактерий. Возникает возможность для создания поливалентных вакцин для профилактики кишечных инфекций.

Синтетические вакцины – принцип получения включает выделение нуклеиновых кислот или полипептидов, образующих антигенные детерминанты, распознаваемые нейтрализующими антителами. Обязательные компоненты таких вакцин – антиген, высокомолекулярный носитель (винилпироллидон, декстран), адъювант. Такие препараты наиболее безопасны в отношении поствакцинальных осложнений, но есть 2 проблемы, мешающие их разработке: не всегда есть информация о идентичности синтетических эпитопов природным антигенам, низкомолекулярные пептиды обладают низкой иммуногенностью, что влечет за собой необходимость подбора адъюванта. Однако этот тип вакцин наиболее оптимален для вакцинации людей с нарушениями иммунного статуса. Особенно перспективно использование НК для иммунопрофилактики инфекций, вызываемых внутриклеточными паразитами. Напр., иммунизация организма РНК и ДНК многих вирусов, малярийного плазмодия и возбудителя туберкулеза приводит к развитию стойкой невосприимчивости.

Молекулярные вакцины – это препараты в которых антиген представлен метаболитами патогенных микроорганизмов, чаще всего молекулярных бактериальных экзотоксинов – анатоксинов.

Анатоксины – токсины обезвреженные формальдегидом (0,4%) при 37-40 ºС в течение 4 нед., полностью утратившие токсичность, но сохранившие антигенность и иммуногенность токсинов и используемые для профилактики токсинемических инфекций (дифтерии, столбняка, ботулизма, газовой гангрены, стафилококковых инфекций и др.). Обычный источник токсинов –промышленно култивируемые естественные штаммы-продуценты. Анатоксины выпускаю в форме моно- (дифтерийный, столбнячный, стафилококковый) и ассоциированных (дифтерийно-столбнячный, ботулинический трианатоксин) препаратов.

Конъюгированные вакцины – комплексы бактериальных полисахаридов и токсинов (напр., сочетание антигенов Haemophilus influenzae и дифтерийного анатоксина). Принимаются попытки создать смешанные бесклеточные вакцины, включающие анатоксины и некоторые другие факторы патогенности, напр., адгезины (напр., ацеллюлярная коклюшно-дифтерийно-столбнячная вакцина).

Моновакцины – вакцины применяемые для создания невосприимчивости к одному возбудителю (моновалентные препараты).

Ассоциированные препараты – для одномоментного создания множественной невосприимчивости, в этих препаратах совмещаются антигены нескольких микроорганизмов (как правило убитых). Наиболее часто применяются: адсорбированная коклюшно-дифтерийно-столбнячная вакцина (АКДС-вакцина), тетравакцина (вакцина против брюшного тифа, паратифов А и В, столбнячный анатоксин), АДС-вакцина (дифтерийно-столбнячный анатоксин).

Методы введения вакцин.

Вакцинные препараты вводят внутрь, подкожно, внутрикожно, парентерально, интраназально и ингаляционно. Способ введения определяют свойства препарата. Живые вакцины можно вводить накожно (скарификацией), интраназально или перopaльно; анатоксины вводят подкожно, а неживые корпускулярные вакцины – парентерально.

Внутримышечно вводят (после тщательного перемешивания) сорбированные вакцины (АКДС, АДС, АДС-М, ВГВ, ИПВ). Верхний наружный квадрант ягодичной мышцы использоваться не должен, так как у 5% детей там проходит нервный ствол, а ягoдицы грудничка бедны мышцами, так что вакцина может попасть в жировую клетчатку (риск медленно рассасывающейся гранулемы). Место инъекции — передненаружная область бедра (латеральная часть четырехглавой мышцы) или, у детей старше 5-7 лет, дельтовидная мыш­ца. Игла вводится отвесно (под углом 90°). После укола следует оттянуть поршень шприца и вводить вакцину только при отсутствии крови, в противном случае следует повторить укол. Перед инъекцией собирают мышцу двумя пальцами в складку, увеличив расстояние до надкостницы. На бедре толщина подкожного слоя у ребёнка до возраста 18 месяцев — 8 мм (макс. 12 мм), а тол­щина мышцы — 9 мм (макс. 12 мм), так что достаточно иглы длиной 22-25 мм. Другой метод — у детей с толстой жировой прослойкой — растянуть кожу над местом инъекции, сократив толщину подкожного слоя; при этом глубина введения иглы меньше (до 16 мм). На руке толщина жирового слоя всего 5-7 мм, а толщина мышцы — 6-7 мм. У больных гемофилией внутримышечное введение осуществляют в мышцы предплечья, подкожное — в тыл кисти или стопы, где легко прижать инъекционный канал. Подкожно вводят несорбированные — живые и полисахаридные — вакцины: в подлопаточную область, в наружную поверхность плеча (на границе верхней и средней трети) или в передненаружную область бедра. Внутрикожное введение (БЦЖ) проводят в наружную поверхность плеча, реакция Манту — в сгибательную поверхность предплечья. ОПВ вводят в рот, в случае срыгивания ребенком дозы вакцины ему дают повторную дозу, если он срыгнет и ее, — вакцинацию откладывают.

Читайте также:  Как получить 4 млн. от государства на покупку квартиры

Наблюдение за привитыми длится 30 минут, когда теоретически возможна анафилактическая реакция. Следует информировать родителей о возможных реакциях, требующих обращения к врачу. Ребенок наблюдается патронажной сестрой первые 3 дня после введения инактивированной вакцины, на 5-6-й и 10-11-й день — после введения живых вакцин. Сведения о проведенной вакцинации заносят в учетные формы, прививочные журналы и в Сертификат профилактических прививок.

По степени необходимости выделяют: плановую (обязательную) вакцинацию, которая проводится в соответствии с календарем прививок и вакцинацию по эпидемиологическим показаниям, которая проводится для срочного создания иммунитета у лиц, подвергшихся риску развития инфекции.

Иммунобиологические препараты могут вводиться различными способами согласно инструкции к вакцинам в зависимости от вида препарата. Бывают следующие способы вакцинации.

  • Введение вакцины внутримышечно. Местом прививки у детей до года является верхняя поверхность середины бедра, а детям с 2 лет и взрослым предпочтительнее вводить препарат в дельтовидную мышцу, которая находится в верхней части плеча. Способ применим, когда нужна инактивированная вакцина: АКДС, АДС, против вирусного гепатита В и противогриппозная вакцина.

Отзывы родителей говорят о том, что дети младенческого возраста лучше переносят вакцинацию в верхнюю часть бедра, нежели в ягoдицу. Этого же мнения придерживаются и медики, обуславливая это тем, что в ягодичной области может быть аномальное размещение нервов, встречаемое у 5 % детей до года. К тому же в ягодичной области у детей этого возраста имеется значительный жировой слой, что увеличивает вероятность попадания вакцины в подкожный слой, из-за чего снижается эффективность препарата.

  • Подкожные инъекции вводятся тонкой иглой под кожу в области дельтовидной мышцы или предплечья. Пример — БЦЖ, прививка от оспы.
  • Интраназальный способ применим для вакцин в форме мази, крема или спрея (прививка от кори, краснухи).
  • Перopaльный способ — это когда вакцину в виде капель помещают в рот пациенту (полиомиелит).

Живая вакцина – это незаменимый препарат для профилактики множества инфекционных заболеваний, который встречается только в корпускулярном виде. Характерной особенностью этого вида вакцины считается то, что главным её компонентом являются ослабленные штаммы возбудителя инфекции, способные размножаться, однако генетически лишённые вирулентности (способности заражать организм). Они способствуют выработке организмом антител и иммунной памяти.

Преимущество живых вакцин состоит в том, что ещё живые, но ослабленные возбудители побуждают человеческий организм выpaбатывать длительную невосприимчивость (иммунитет) к данному патогенному агенту даже при однократной вакцинации. Существует несколько способов введения вакцины: внутримышечно, под кожу, капли в нос.

Недостаток — возможна генная мутация патогенных агентов, что приведет к заболеванию привитого. В связи с этим противопоказана для пациентов с особо ослабленным иммунитетом, а именно для людей с иммунодефицитом и онкобольных. Требует особых условий трaнcпортировки и хранения препарата с целью обеспечения сохранности живых микроорганизмов в нём.

«Классические» инактивированные вакцины против COVID-19 разработаны, испытываются и уже применяются во многих странах мира (Индии, Китае, Казахстане, России, Франции, Турции, Иране и др.). При их производстве высокоочищенные препараты коронавируса инактивируют (как правило, бета-пропиолактоном — высокоактивным алкилирующим агентом, или формальдегидом), а в качестве стимулятора иммунного ответа (адъюванта) добавляют гидроокись алюминия. Основная трудность — для производства такой вакцины необходим высокопатогенный живой вирус в больших количествах, который можно получить в условиях биологической безопасностиBSL-2 или даже BSL-3, подразумевающей помещения со сложными инженерными системами для фильтрации воздуха и дезактивации всех отходов, недешевое оборудование и обязательные защитные костюмы для персонала в течение всего рабочего дня.

Инактивированные вакцины производятся по разным технологиям уже более ста лет, и фактически они представляют собой цельные вирусные частицы, но как бы «зашитые» химическими скрепками без возможности раскрыться. Поэтому в результате иммунизации антитела на их внутренние белки чаще всего не образуются. При грамотном производстве такие вакцины дают при введении минимум побочных реакций, но далеко не всегда — полноценный и долговременный иммунитет.

К примеру, так и не удалось получить эффективные инактивированные вакцины против паротита, ВИЧ-инфекции, гепатита С и вируса герпеса, а для вируса кори инактивированная вакцина оказалась очень дорогой. Что касается коронавируса SARS-CoV-2, то эффективность инактивированных вакцин оказалась существенно ниже по сравнению с векторными и мРНК-вакцинами, о которых пойдет речь ниже (70–80 против 90–95%). Так что минимум побочных реакций у вакцины — это хорошо, но более важна ее эффективность.

Уже несколько десятков лет у разработчиков вакцин были в запасе еще два новаторских подхода. Развивались они давно, но из-за консерватизма контролирующих органов до 2020 г. эти разработки оставались на стадии клинических испытаний.

Во-первых, это векторные вакцины, работы над которым ведутся с 1980-х гг. В этом случае в генетический материал непатогенного вируса вставляют ген основного иммуногенного белка патогена, и этот «гибрид» (непатогенный и чаще всего неспособный размножаться в организме человека) используют для вакцинации.

Когда такой рекомбинантный вирус попадает в клетки, информация с вирусного генома «считывается» в виде матричной РНК, по которой в клетке синтезируются вирусные белки, включая тот самый встроенный иммуногенный белок патогена. Далее этот белок, как при обычной инфекции, встраивается в клеточную мембрану, имитируя ситуацию заражения организма инфекционным агентом, не утратившим способность к размножению. Организм реагирует на такой экспонированный на клетке белок формированием иммунного ответа.

В качестве векторов-переносчиков генов иммуногенных вирусных белков испытывались разные вирусы: осповакцины, кори, аденовирусы, везикулярного стоматита, желтой лихорадки, альфа- и флавивирусы и др. Еще до 2020 г. ряд таких кандидатных вакцин дошел до клинических испытаний 1–2-й фазы, показав свою перспективность, но дальше этого дело не пошло. Кстати сказать, в 1990-е гг. несколько кандидатных вакцин были разработаны в новосибирском ГНЦ вирусологии и биотехнологии «Вектор», но контролирующие органы тогдашнего российского Минздрава не пустили их дальше первых двух фаз клинических испытаний, мотивируя это тем, что таких вакцин раньше не было. Но ведь и до Пастера не было инактивированных вакцин!

Вакцина — это медицинский иммунобиологический препарат, которая содержит ослабленный возбудитель, полученный путем специальной обработки или искусственного синтеза. Вакцина вводится только под контролем врача. Разработка, хранение и использование вакцин находится под контролем Всемирной организации здравоохранения и международных организаций по контролю безопасности лекарственных средств.

Среди микроорганизмов, с которыми успешно борются с помощью вакцинации, могут быть вирусы (например, возбудители гриппа, кори, краснухи, полиомиелита, гепатита А и В и др.) или бактерии (возбудители туберкулеза, дифтерии, коклюша, столбняка и др.).

В последнее время разрабатываются и мультивакцины, в состав которых входят несколько возбудителей. Такая прививка способна защитить сразу от нескольких заболеваний.

Полный состав вакцин обязательно присутствует в аннотации к препарату во избежание возможного появления у человека аллергической реакции на тот или иной компонент.

Прививка создает специфический иммунитет

К счастью, в ряде случаев, человечеству удалось перехитрить микробов. Когда мы вводим антиген (проще говоря, кусочек клетки) микроорганизма или же целый, но ослабленный микроб в виде вакцины, то болезнь не возникает, зато вырабатываются антитела, и в иммунных клетках сохраняется информация о возбудителе. При инфицировании человека организм оказывается уже вооружен и может быстро защитить себя.

Таким образом, прививая ребенка, мы не только не «убиваем» и не «парализуем» иммунитет, а, наоборот, создаем специфический иммунитет против конкретной болезни, избегая при этом всех неприятностей периода заболевания.

При некоторых инфекционных заболеваниях (дифтерия, столбняк) тяжелые осложнения и летальные исходы обусловлены действием не самого микроба, а его токсинов – белковых молекул, которые он синтезирует. Против токсинов в организме тоже образуются нейтрализующие антитела. В таких случаях, эффективна вакцина, содержащая не саму бактерию или ее компоненты, а обезвреженный токсин, который в результате обработки утратил токсические свойства, но сохранил иммуногенные (в вакцинологии такое вещество обозначатся как анатоксин). Даже если привитый человек заболеет, антитоксические антитела не позволят токсину вызвать потенциально фатальные проявления болезни.

Читайте также:  Кассовые аппараты с 2023 года для ИП с 1 июля

Особенности иммунной системы у детей

1. Иммунная система новорожденного ребенка НЕ ЗРЕЛАЯ! Ее созревание по длительности совпадает со всем периодом детства.

Но это не означает, что появившийся на свет малыш абсолютно беззащитен перед внешними агрессорами. В первое время его основная защита — это материнские молекулы (иммуноглобулины), переданные малышу внутриутробно и продолжающие поступать в его организм в период грудного вскармливания. Недаром последнее служит самой действенной мерой профилактики болезней для грудных детей.

2. Процесс активного становления иммунной системы ребенка проходит через несколько критических периодов:

  • первый месяц жизни (0–29 дни) — пассивная защита малыша материнскими антителами; собственные защитные механизмы еще очень несовершенны;
  • 4–6 месяц — заканчивается «срок действия» пассивной защиты и начинается активное становление собственной;
  • второй год жизни — резкое увеличение разнообразия контактов с внешним миром на фоне все еще недостаточной внутренней защищенности;
  • шестой-седьмой год жизни и подростковый период (12–15 лет) — активные перестройки в работе иммунной системы, временно повышающие восприимчивость организма к некоторым инфекциям.

ИНФЕКЦИОННЫЕ БОЛЕЗНИ – ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ.

Микроорганизмы сопровождают человека всю его жизнь. С самого рождения малыш начинает знакомиться с миром вирусов и бактерий. И, помимо, положительных и необходимых для жизни контактов, микроорганизмы могут представлять опасность для человека, вызывая различные инфекционные заболевания.

До определенного времени инфекции являлись главной причиной высокой смертности и малой продолжительности жизни человека, поражая огромное количество людей и обширные территории земного шара.

В истории человечества первая пандемия чумы в середине VI века – «Юстинианова чума» – привела к смерти около 100 миллионов человек, убив от 50 до 60% населения Европы. Вторая пандемия чумы, названная «Чёрная смерть», возникла в середине XIV века и стала причиной гибели 30% населения Азии и до 50% жителей Европы. Третья пандемия чумы началась в Китае в середине XIX века и за несколько десятков лет охватила всю Землю.

В январе 1897 года человеку впервые была введена вакцина от чумы. Именно благодаря вакцине, разработанной учеником Л.Пастера русским ученым В.Хавкиным, была остановлена последняя пандемия чумы.

Распространение натуральной оспы в Европейском регионе связано с походами крестоносцев XI-XIII веков. В XVI века вирус оспы был занесен в Англию, а вскоре вызвал эпидемию в Центральной и Южной Америке, приведшую к гибели до 90% населения. В отдельные годы следующих двух веков в странах Европы заболевало оспой 10-12 миллионов человек, смертность составляла до 25-40%.

Первую прививку от натуральной оспы сделал в конце XVIII века английский врач Э.Дженнер, положив тем самым начало будущей ликвидации этого страшного заболевания, последний случай которого был зарегистрирован в мире в октябре 1977 г. в Сомали.

В XIX веке туберкулез убил около одной четверти взрослого населения Европы.

В 1882 г. Р.Кох выделил бактерию, вызывающую туберкулёз – микобактерию, и создал вещество для диагностики туберкулеза – туберкулин. Всемирная организация здравоохранения (далее – ВОЗ) объявила день открытия микобактерии туберкулеза Р.Кохом 20 марта Всемирным днем борьбы с туберкулезом. О возможности предотвращать туберкулез и уменьшать риск возникновения тяжелых форм заговорили, когда в начале XX века французские ученые Альбер Кальметт и Камиль Герен создали первую человеческую вакцину на основе штамма ослабленной живой коровьей туберкулезной бациллы – вакцину БЦЖ (BCG – Bacille Calmette-Guerin).

В XIX – первой половине ХХ веков полиомиелит бушевал в Европе и США, поражая десятки тысяч людей ежегодно.

Начало масштабного использования полиомиелитной вакцины привело к резкому сокращению заболеваемости. В настоящее время местная передача дикого вируса сохраняется на территории только трех государств – Афганистана, Пакистана и Нигерии.

Во время последней эпидемии краснухи в США (60-е годы ХХ века), заболело 12,5 миллионов человек, более чем у 2 тысяч человек развился энцефалит и более 11 тысяч женщин вынуждены были прервать беременность по причине риска развития у детей синдрома врожденной краснухи (далее – СВК). Было рождено более 20 тысяч детей с СВК. При этом имели глухоту более 11 тысяч детей, были слепые от рождения более 3,5 тысяч детей, развилась умственная отсталость почти у 2 тысяч малышей. Только широкомасштабная вакцинация последнего десятилетия смогла привести к практически полной ликвидации краснухи и СВК во многих развитых и в отдельных развивающихся странах.

Две крупные вспышки эпидемического паротита были зарегистрированы в США: в 2006 г. – более 6,5 тысяч случаев среди студентов университетов Среднего запада и в 2010 г. – более 3,5 тысяч случаев среди старшеклассников нескольких школ, членов религиозной общины ортодоксальных евреев-хасидов. Риск формирования урона в виде возможного, прежде всего «мужского» бесплодия, которым осложняются средние и тяжелые формы эпидемического паротита в 20-50% случаев, нанесенный данной общине, достаточно велик.

В Республике Беларусь в довакцинальном периоде ежегодно около 1 тысячи детей заболевало полиомиелитом и значительная часть из них оставалась инвалидами, более 50 тысяч малышей заражались корью и краснухой, около 33 тысяч – эпидемическим паротитом и более 11 тысяч человек заболевало дифтерией.

В современности причиной эпидемий и пандемий остается вирус гриппа. Эпидемии гриппа многим известны, например, «Испанский грипп» в 1918–1919 гг. – унес жизни 50-100 миллионов человек; Азиатский грипп в 1957 г. – около 2 миллионов человек, Гонконгский грипп в 1968 г. – около 34 тысяч человек.

Согласно обновленным в 2017 г. данным ВОЗ респираторные заболевания, вызываемые сезонным гриппом, ежегодно приводят к смерти от 290 до 650 тысяч человек во всем мире.

Для нашей страны также продолжает оставаться актуальным грипп и острые респираторные инфекции, как самые массовые инфекционные заболевания современности. В последние пять эпидемических сезонов заболеваемости (с 2012 г.) ОРИ и гриппом заболевало около 1,8 миллионов человек. При этом число заболевших гриппом колебалось в широком диапазоне: от нескольких десятков до более 47 тысяч случаев.

Ближайшее будущее человечества, несмотря на развитие систем здравоохранения, появление новейших средств и способов диагностики, лечения и профилактики, будет сопряжено с инфекционными болезнями. Их распространению будут способствовать вооруженные конфликты, экономические кризисы, глобальные миграционные процессы, изменения климата и т.д.

От человечества в целом и каждого гражданина в отдельности зависит, сколько будет возникать случаев инфекционных заболеваний – единицы, десятки, сотни или тысячи. Увеличение количества заболеваний будет неизбежно приводить к большему риску возникновения тяжелых случаев, приводящих к инвалидности и летальному исходу, несмотря на своевременно и в полном объеме оказанную современную медицинскую помощь.

12 век

1100 Первые упоминания о прививании против оспы в Китае

18 век

1721 Прививание против оспы вводится в Великобритании
1796 Дженнер сделал прививку против коровьей оспы и ввел слово «вакцинация»
1798 Вакцинация против оспы

19 век

1870 Пастер изготовил первую живую бактериальную вакцину (против куриной холеры)
1884 Пастер изготовил первую живую вирусную вакцину (против бешенства)
1885 Пастер впервые использовал вакцину против бешенства на человеке
1888 Пастер разработал вакцину против сибирской язвы
1890-1892 Беринг и Китазато получили дифтерийный и столбнячный антитоксины, заложив основы иммунотерапии
1896 Созданы вакцины против брюшного тифа, холеры и чумы. Груббер и Дархэм обнаружили у иммунизированных антитела, положив основу серодиагностике инфекционных заболеваний

20 век

1921 Calmet и Guerin получили БЦЖ, первая живая бактериальная вакцина для человека
1923 Начало использования дифтерийного анатоксина (Рамон)
1926 Начало использования вакцины против коклюша на человеке
1927 Начало использования вакцины БЦЖ на человеке
1927 Начало использования вакцины против столбняка на человеке
1933 Goodpasture описал методику получения культуры вирусов на куриных эмбрионах
1935 Начало использования вакцины против желтой лихорадки на человеке
1936 Создана вакцина против гриппа
1939 Создана вакцина против клещевого энцефалита
1946 Гайский, Эльберт и Файбич создали вакцину против туляремии
1951 Создана вакцина против бруцеллёза
1955 Лицензирована инактивированная полиомиелитная вакцина
1957 Создана вакцина АКДС
1958 Создана живая вакцина против полиомиелита (ОПВ)
1961 Получена линия человеческих диплоидных клеток
1963 Лицензированы коревая и трехвалентная оральная полиомиелитная вакцины
1966 ВОЗ объявила программу искоренения оспы
1967 Начало вакцинации против паротита
1970 Начало вакцинации против краснухи
1971 Создана тривалентная вакцина против кори-паротита-краснухи
1972 Создана вакцина против менингита
1976 Создана конъюгированная вакцина против пневмококка
1977 Последний случай естественного заражения оспой
1981 Начало вакцинации против гепатита В
1981 Создана ацеллюлярная вакцина против коклюша
1984 Создана вакцина против ветряной оспы
1986 Лицензирование первой рекомбинантной вакцины (гепатит В)
1990 Лицензирование первой полисахаридной конъюгатной вакцины (гемофильная инфекция типа b)
1991 Введение детской иммунизации против гепатита В
1991 Создана вакцина против гепатита А
1994 Искоренение полиомиелита в Америке
1995 Лицензирование вакцины против ветряной оспы
1996 Лицензирование бесклеточной вакцины против коклюша
1997 Рекомендация использования последовательной схемы иммунизации против полиомиелита
1998 Создание вакцины против ротавирусной инфекции
1998 Создана вакцина против боррелиоза (болезнь Лайма)
1999 Запрет использования ротавирусной вакцины

21 век

2000 Прекращение использования живой полиомиелитной вакцины в США
2000 Создание вакцины против пневмококковой инфекции для детей
2006 Создана вакцина против вируса папилломы человека
2006 Вакцина против ротавирусной инфекции используется в США
2007 Вакцина против ротавирусной инфекции используется в Европе
2007 Лицензированы двухвалентная и тетравалентная вакцины против папилломавирусной инфекции
2008 Вакцина против японского энцефалита передана ВОЗ для предварительных испытаний
2013 Живые и инактивированные вакцины против японского энцефалита прошли лицензирование и преквалификацию ВОЗ и применяются в эндемичных странах
2015 Активная работа по разработке и клиническим испытаниям вакцины против вируса Эбола
2015 Европейское агентство лекарственных средств одобрило использование первой в мире вакцины, способной защитить детей от малярии
2016 В США Госуправление по продуктам и лекарствам (FDA) одобрило к применению вакцину против холеры
2017 Новая «Повестка дня в области устойчивого развития на период до 2030 года» призывает правительства всех стран мира оказывать поддержку в проведении научных исследований и разработок новых вакцин, чтобы такие болезни, как лихорадка Денге, Эбола и Зика и другие инфекции могли навсегда кануть в прошлое …
Читайте также:  Оплата алиментов на счет ребенка

Какие существуют виды вакцин?

  • Живые вакцины. Они содержат ослабленный живой микроорганизм. Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость.
  • Инактивированные (убитые вакцины). Содержат убитый целый микроорганизм , их убивают физическими или химическими методами. Такие вакцины реактогенны, применяются мало.
  • Химические вакцины. Содержат компоненты клеточной стенки или других частей возбудителя.
  • Анатоксины. Вакцины, содержащие инактивированный токсин (яд), продуцируемый бактериями. В результате такой обработки токсические свойства утрачиваются, но остаются иммуногенные.
  • Рекомбинантные вакцины. Вакцины, полученные методом генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающие за синтез защитных антигенов, встраивают в геном какого-либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген.
  • Синтетические вакцины — представляют собой искусственно созданные антигенные детерминанты микроорганизмов.
  • Ассоциированные вакцины. Вакцины различных типов, содержащие несколько компонентов.

Нужно ли каким-то образом подготовить ребёнка перед вакцинацией?

Никакой особой подготовки большинству детей не требуется. Перед вакцинацией врач осматривает ребенка, измеряет его температуру и подробно расспрашивает маму на предмет наличия жалоб на его здоровье. Руководствуясь собранной информацией, доктор принимает решение о том, какую вакцину в данный момент необходимо ввести, есть ли у ребёнка противопоказания для вакцинации.

Родителям не стоит брать на себя функции врача, поскольку знаний, почерпнутых из Интернета, явно недостаточно, чтобы самостоятельно определить эффективность той или иной прививки, а тем более решить, нужна она ребёнку или нет. К сожалению, и педиатры не всегда имеют время, а порой и достаточной квалификации, чтобы доступно объяснить родителям, почему необходима вакцинация. Родители же, не имея достоверной информации, отказываются ставить своим детям прививки. Но тем самым они подвергают их огромному риску, поскольку при заносе какой-либо инфекции, например, полиомиелита, кори или коклюша, страдать будут в первую очередь непривитые дети.

В организм человека вводится специальное вещество, содержащее ослабленные или убитые микроорганизмы, продукты их жизнедеятельности или антигены, полученные генно-инженерным путем.

После того как был введен препарат, в организме активируется иммунная система, принимая в себя антитела к возбудителю заболевания. Таким образом формируется иммунитет, который впоследствии либо не пропустит инфекцию в организм, либо поможет ей пройти с минимальными проявлениями.

Число заболеваний, в успешной борьбе с которыми используются вакцины, на сегодняшний день перевалило за 20. Среди них туберкулез, полиомиелит, краснуха, дифтерия, корь, коклюш. Такое страшное заболевание, как оспа, унесшее не один миллион человеческих жизней, было ликвидировано к 70-м года XX века только благодаря прививкам.

Они содержат ослабленный живой микроорганизм. Примером могут служить вакцины против полиомиелита, кори, паротита, краснухи или туберкулеза. Могут быть получены путем селекции (БЦЖ, гриппозная). Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость. Утрата вирулентности у таких штаммов закреплена генетически, однако у лиц с иммунодефицитами могут возникнуть серьезные проблемы. Как правило, живые вакцины являются корпускулярными.
Живые вакцины получают путем искусственного аттенуирования (ослабления штамма (BCG — 200-300 пассажей на желчном бульоне, ЖВС — пассаж на ткани почек зеленых мартышек) либо отбирая естественные авирулентные штаммы. В настоящее время возможен путь создания живых вакцин путем генной инженерии на уровне хромосом с использованием рестриктаз. Полученные штаммы будут обладать свойствами обеих возбудителей, хромосомы которых были взяты для синтеза. Анализируя свойства живых вакцин следует выделить, как положительные так и их отрицательные качества.

Положительные стороны: по механизму действия на организм напоминают «дикий» штамм, может приживляться в организме и длительно сохранять иммунитет (для коревой вакцины вакцинация в 12 мес. и ревакцинация в 6 лет), вытесняя «дикий» штамм. Используются небольшие дозы для вакцинации (обычно однократная) и поэтому вакцинацию легко проводить организационно. Последнее позволяет рекомендовать данный тип вакцин для дальнейшего использования.

Отрицательные стороны: живая вакцина корпускулярная — содержит 99% балласта и поэтому обычно достаточно реактогенная, кроме того, она способна вызывать мутации клеток организма (хромосомные аберрации), что особенно опасно в отношении половых клеток. Живые вакцины содержат вирусы-загрязнители (контаминанты), особенно это опасно в отношении обезьяннего СПИДа и онковирусов. К сожалению, живые вакцины трудно дозируются и поддаются биоконтролю, легко чувствительны к действию высоких температур и требуют неукоснительного соблюдения холодовой цепи.
Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

Примером живых вакцин могут служить вакцины для профилактики краснухи (Рудивакс), кори (Рувакс), полиомиелита (Полио Сэбин Веро), туберкулеза, паротита (Имовакс Орейон). Живые вакцины выпускаются в лиофилизированном виде (кроме полиомиелитной).


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *